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Abstract. We extend the approach of Banks, Myerson, and Kogut for the calculation of the Wilson loop in
lattice U(1) to the non-abelian SU(2) group. The original degrees of freedom of the theory are integrated
out, new degrees of freedom are introduced in several steps. The centre group Z2 enters automatically
through the appearance of a field strength tensor fµν , which takes on the values 0 or 1 only. It obeys
a linear field equation with the loop current as source. This equation implies that fµν is non vanishing
on a two-dimensional surface bounded by the loop, and possibly on closed surfaces. The two-dimensional
surfaces have a natural interpretation as strings moving in euclidean time. In four dimensions we recover
the dual Abrikosov string of a type II superconductor, i.e. an electric string encircled by a magnetic
current. In contrast to other types of monopoles found in the literature, the monopoles and the associated
magnetic currents are present in every configuration. With some plausible, though not generally conclusive,
arguments we are directly led to the area law for large loops.

1 Introduction

It is now widely accepted, that confinement is due to the
formation of a color electric string, and that magnetic
monopoles play an essential role in this context. Up to
now there is a lively activity in this field, illuminating the
phenomenon from various sides. A particularly appealing
approach is the one by Banks, Myerson, and Kogut [1]
which is now more than 20 years old. They considered the
partition function for an electric current loop and derived
step by step the appearance of monopoles by integrating
out the original degrees of freedom and introducing new
ones. The possibility to do this was restricted to the lattice
U(1) model with the Villain action [2] and some other sim-
ple models. The authors also remark, that the techniques
do not generalize simply to non-abelian theories.

We will start by applying and generalizing the methods
of ref [1]. In a first step the SU(2) matrices on the links
are explicitly parametrized by three angles ψ, ϑ, ϕ. An ap-
propriate decomposition of the SU(2) matrices allows the
calculation of the trace in the plaquette action. After an
expansion of exponentials into modified Bessel functions
the integrations over the link angles can be performed.
They lead to constraints for the new variables which were
introduced in the expansions. Most of these variables are
irrelevant and the summations can be performed after a
suitable transformation.

After this has been done, we are left with several inte-
ger variables which are restricted by constraint equations.
The most important one is a Z2 field strength tensor fµν .
It lives on plaquettes and is either 0 or 1. This tensor obeys

an inhomogeneous linear field equation with the loop cur-
rent as source. The solutions of the equation have a simple
geometrical interpretation. The tensor fµν is non vanish-
ing on a two-dimensional surface bounded by the loop,
and possibly on closed two-dimensional surfaces. These
surfaces have a natural interpretation as strings moving in
euclidean time. There is a string which connects the two
charges associated with the loop, and possibly a number
of additional closed strings. The situation is particularly
transparent for planar loops, where the layer on the min-
imal surface, corresponding to the straight string, plays
a special role. For large loops we can use some general
arguments and reasonings from statistical mechanics, like
additivity of the free energy, and obtain the area law. The
subtle question, whether a finite string tension survives
in the thermodynamic limit and in the continuum limit,
needs additional investigations.

Our approach is purely analytical and non-perturba-
tive, no gauge fixing was performed, and β was kept ar-
bitrary. Lengthy calculations were done with the help of
Mathematica. Nowhere any physical picture of what we
expect was put in. It is the formalism itself which auto-
matically leads to the appearance of a plaquette variable
fµν which is naturally associated with the world sheet of a
string. If one could perform the integrations and summa-
tions over the remaining parameters one would obtain the
explicit string action. Even without doing this, the for-
malism clearly shows the appearance of the string picture
and the origin of the confinement mechanism.
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2 The partition function

We are interested in the expectation value of a Wilson
loop W , characterized by a closed current loop J :

Z[J ] =
∫
Tr[W (J)] exp[

β

2

∑
pρν

TrUρν(p)]D[U ]. (2.1)

The sum runs over all plaquettes pρν (with ρ < ν), while
Uρν(p) is the product of the four SU(2)-matrices on the
links of the plaquette. We will perform rather extensive
manipulations in the following, therefore we fix our nota-
tion here:

p, q, r denote lattice points,
µ, ν, ρ, λ = 1, · · · , d denote space directions,
p±µ is the lattice point next to p in positive or
negative µ-direction,
pµ denotes the link connecting p with p+ µ,
pµν with µ < ν is the plaquette determined by
the links pµ and pν ,
Θaµ(p) = (ψ, ϑ, ϕ)µ(p) denotes three angles
which parametrize the SU(2) matrices on the link
pµ, indices a, b generally run over ψ, ϑ, ϕ,
Uµ(p) ≡ U(Θaµ(p)) is the SU(2) matrix on the
link pµ,
Uρν(p) = Uρ(p)Uν(p+ ρ)U+

ρ (p+ ν)U+
ν (p) is the

plaquette variable.

(2.2)

As a first step we have to choose a parametrization for the
link variables Uµ(p) in order to be able to do the group in-
tegrations. We proceed similarly as in previous work which
applied the optimized δ-expansion on the lattice [3], [4].
In our case the Euler parametrization is the most appro-
priate, i.e. we use

U = eiσ3ψeiσ2ϑeiσ3ϕ. (2.3)

The Haar measure is proportional to sin(2ϑ). A possible
choice of the parameter space is −π < ψ < π, 0 < ϕ <
π, 0 < ϑ < π/2.

For the following it is convenient to extend this region.
All integrals which appear contain functions of the Uρν(p)
which are periodic in the Euler angels. So we may use
some symmetry relations which are easily seen from the
decomposition of U into 1 and the σm. The shift ϕ → ϕ−
π, ψ → ψ−π leaves U invariant. Therefore one can extend
the ϕ-integration into the interval from −π to π, thus
covering the group manifold twice. The further symmetry
ϑ → −ϑ, ψ → ψ − π/2, ϕ → ϕ + π/2 allows to extend
the ϑ-integration to the interval −π/2 < ϑ < π/2 if we
continue the Haar measure as even function. Finally the
symmetry ϑ → ϑ − π, ψ → ψ − π allows the extension of
the ϑ-integration to the full interval. Therefore we take

H(ϑ) =
π

2
| sin(2ϑ)| (2.4)

as Haar measure in the following, and use the common
boundaries −π < ψ, ϑ, ϕ < π.

-
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Fig. 1. The plaquette pρν and the link variables

In Fig. 1 we show the notation for the link variables of
the plaquette pρν .

The parametrization according to (2.3) becomes

Uρ(p) = eiσ3ψρ(p) eiσ2ϑρ(p) eiσ3ϕρ(p),

Uν(p+ ρ) = eiσ3ψν(p+ρ) eiσ2ϑν(p+ρ) eiσ3ϕν(p+ρ),

U+
ρ (p+ ν) = e−iσ3ϕρ(p+ν) e−iσ2ϑρ(p+ν) e−iσ3ψρ(p+ν), (2.5)

U+
ν (p) = e−iσ3ϕν(p) e−iσ2ϑν(p) e−iσ3ψν(p).

An appropriate technique for the further procedure, which
was also extensively used in [3] and [4], is the splitting of
the matrix exponentials into sums of ordinary exponen-
tials times projection operators, in general

e±iσmα =
∑
s=±1

e±isαPs(m),

with Ps(m) =
1
2
(1 + sσm). (2.6)

The link variables U are parametrized as in (2.5), the pla-
quette variable Uρν(p) therefore contains 12 factors. To
every factor we apply the decomposition (2.6). This means
that we need 12 summation indices s[Θ] = ±1, associated
with the twelve angles in (2.5). At the end TrUρν(p) be-
comes a product of 12 factors, each being a sum of two
terms of the type (2.6). So in total we have a sum of 212

terms. Each term of the sum consists of a trace T of a
product of 12 projectors Ps(m), multiplied by an expo-
nential.

At the four corners of the plaquette one has a product
of two projectors Ps(3)Ps′(3). They both project on the
same subspace, therefore we get a non-vanishing result
only if the neighboring parameters s and s′ agree. So we
must have s[ϕρ(p)] = s[ψν(p+ρ)], s[ϕν(p+ρ)] = s[ϕρ(p+
ν)], s[ψρ(p + ν)] = s[ϕν(p)], s[ψν(p)] = s[ψρ(p)], there are
in fact not 12, but only 8 independent parameters.

We enumerate the remaining 8 independent parame-
ters s[Θ] in a consecutive way, starting with s[ϑρ(p)]. In
(2.7) we give the parameters si, together with the angles
to which they refer. According to the remarks above, the
si with even i belong to two angles.
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s1 ⇔ ϑρ(p), s2 ⇔ ϕρ(p), ψν(p+ ρ),
s3 ⇔ ϑν(p+ ρ), s4 ⇔ ϕν(p+ ρ), ϕρ(p+ ν),
s5 ⇔ ϑρ(p+ ν), s6 ⇔ ψρ(p+ ν), ϕν(p), (2.7)
s7 ⇔ ϑν(p), s8 ⇔ ψν(p), ψρ(p).

The number of terms in the expansion of TrUρν(p) has
now been reduced from 212 to 28. We enumerate these
terms by an index n, the order in which this is done needs
not to be specified yet. Thus each si becomes a function
of n, we denote it by sin. The traces also depend upon n,
we denote them by Tn. Finally one can write TrUρν(p) in
the following form:

TrUρν(p) = Tr[Uρ(p)Uν(p+ ρ)U+
ρ (p+ ν)U+

ν (p)]

=
28∑
n=1

Tn exp[iAnρν(p;Θ, s)]. (2.8)

Here

Anρν(p;Θ, s) = s8nψρ(p) + s1nϑρ(p) + s2nϕρ(p)

+s2nψν(p+ ρ) + s3nϑν(p+ ρ)
+s4nϕν(p+ ρ) − s4nϕρ(p+ ν)
−s5nϑρ(p+ ν) − s6nψρ(p+ ν)
−s6nϕν(p) − s7nϑν(p) − s8nψν(p). (2.9)

The computation of the non-vanishing 28 traces Tn shows
that they all have the values ±1/16. This structure is eas-
ily understood. Applying the projectors Ps(3) and Ps(2)
to a given vector successively leads to alternating projec-
tions on different subspaces. Each projection gives a factor
±1/

√
2, with the sign depending upon the sin. There are

144 values of n with Tn = 1/16 and 112 with Tn = −1/16.
Obviously

∑
n Tn = 2 as it should. A further simplification

is obtained from the symmetry Tn(sin) = Tn(−sin), which
is easily seen by inserting σ1σ1 between all projectors
and using σ1Ps(m)σ1 = P−s(m) for m = 2, 3. Together
with the symmetry Anρν(p;Θ, sin) = −Anρν(p;Θ,−sin) and
the reality of the trace in (2.8) we can therefore fix, e.g.
s8n = 1, multiply (2.8) by 2 on the rhs, and restrict the
sum over n to the 27 values s1n, · · · , s7n. It is convenient
to introduce sign factors εn = ±1 and write

Tn =
εn
16

= Tr [(Ps1n(2)Ps2n(3))(Ps3n(2)Ps4n(3))
×(Ps5n(2)Ps6n(3))(Ps7n(2)Ps8n=1(3))] . (2.10)

According to the previous remarks we dropped redundant
projectors and fixed s8n = 1. We may now write (2.8) as
sum over the restricted set n in the form

TrUρν(p) =
1
8

27∑
n=1

εn cos[Anρν(p;Θ, s)]. (2.11)

In order to perform the integrations over all the angles
ψ, ϑ, ϕ we proceed essentially as in [1]. The various ex-
ponentials are expanded into a series of modified Bessel

functions according to the formula

exp[εz cosA] =
∞∑

l=−∞
εlIl(z)eilA for ε = ±1. (2.12)

The replacement ε → −ε is obviously equivalent to the
shift A → A+ π. Using (2.11) and (2.12) we thus find

exp[
β

2

∑
pρν

TrUρν(p)]

= exp


 β

16

∑
pρν ,n

εn cos[Anρν(p;Θ, s)]




=
∏
pρν ,n

exp
[
β

16
εn cos[Anρν(p;Θ, s)]

]

=
∏
pρν ,n

∞∑
l=−∞

(εn)lIl(
β

16
) exp[ilAnρν(p;Θ, s)] (2.13)

=
∑
lnρν(p)

∏
pρν ,n

(εn)l
n
ρν(p)Ilnρν(p)(

β

16
) exp[ilnρν(p)A

n
ρν(p;Θ, s)].

In the last step we exchanged the order of the product and
the sum. The summation parameters l must then be dis-
tinguished by indices referring to the corresponding pla-
quette pρν and the index n; the lnρν(p) run independently
from −∞ to ∞.

We can now write down the expectation value for a
Wilson loop. We characterize it by a closed current loop
Jλ(q) which is ±1 if the current runs in or against the
direction of the link qλ, and 0 otherwise. For simplicity
we exclude loops which run multiply through some links.
For the calculation of the trace Tr[W (J)] we use again
the decomposition (2.6) for the link variables on the loop,
parametrized by (2.3). For every link qλ on the loop we
have two parameters ŝbλ(q) = ±1 (not three, because again
neighboring projectors have to coincide), the whole set
of these will be denoted by ŝ. For a loop of lengt L we
have 2L parameters ŝbλ(q) = ±1 and in total a sum of
22L terms. We count these by an index n̂, and denote the
parameters by sbλn̂(q). The traces are called Wn̂. The Wn̂

have a similar structure as the Tn; their values are ±1/2L,
and

∑
n̂Wn̂ = 2. The partition function now reads

Z[J ] =
∫ ∑

n̂

Wn̂ exp[i
∑
qλb

Jλ(q)ŝbλn̂(q)Θ
b
λ(q)]

×
∑
lnρν(p)


 ∏
pρν ,n

(εn)l
n
ρν(p)Ilnρν(p)

(
β

16

)

× exp[ilnρν(p)A
n
ρν(p;Θ, s)]




×
∏
rµ

(
H(ϑµ(r))

∏
a

dΘaµ(r)
2π

)
. (2.14)
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Obviously the first sum over n̂ is the expansion of the loop.
The sum over lnρν(p) in the second line contains the action
transformed as in (2.13), while the product over r, µ in
the third line contains the integrations together with the
Haar measure. We may factorize the product over pρν , n
and apply the addition theorem for the exponentials. This
results in

Z[J ] =
∫ ∑

n̂

Wn̂ exp


i∑

qλb

Jλ(q)ŝbλn̂(q)Θ
b
λ(q)




×
∑
lnρν(p)


 ∏
pρν ,n

(εn)l
n
ρν(p)Ilnρν(p)(

β

16
)




× exp

[
i
∑

p,ρ<ν,n

lnρν(p)A
n
ρν(p;Θ, s)

]

×
∏
rµ

(
H(ϑµ(r))

∏
a

dΘaµ(r)
2π

)
. (2.15)

We are now ready to perform the angular integrations
over Θaµ(r), remembering the definition of Anρν(p;Θ, s) in
(2.9). The integrations over ψµ(r) and ϕµ(r) lead to a
Kronecker-δ which gives a constraint, while the ϑµ(r) in-
tegration involves the Haar measure (2.4) and leads to a
more complicated function. We shall also call it a con-
straint for simplicity. It is convenient to define a symbol
δa(C) for integer C by

δa(C) =




∫ π
−π eiCψ dψ

2π = δC,0 for a = ψ,ϕ,∫ π
−πH(ϑ)eiCϑ dϑ

2π

=




1/(1 − C2/4)
if C is a multiple of 4,

0 otherwise


 for a = ϑ.

(2.16)
The argument of the constraint which arises from the
Θaµ(r)-integration becomes

Caµ(r) ≡
∑
ν>µ,n

[s(8,1,2)nlnµν(r) − s(6,5,4)nl
n
µν(r − ν)]

−
∑
ν<µ,n

[s(8,7,6)nlnνµ(r) − s(2,3,4)nl
n
νµ(r − ν)]

+Jµ(r)ŝaµn̂(r), (2.17)

where one has to use the first, second, or third subscript
on s for a = ψ, ϑ, ϕ respectively. So we end up with the
following expression for the expectation value of the loop:

Z[J ] =
∑
n̂

Wn̂

∑
lnρν(p)


 ∏
pρν ,n

(εn)l
n
ρν(p)Ilnρν(p)(

β

16
)




×
∏
rµa

δa[Caµ(r)]. (2.18)

3 Integrating out unnecessary variables

The constraint equations (2.17), as they stand, have a
quite different character than the corresponding ones in
the abelian case in [1]. There one had one parameter lµν(r)
for every plaquette rµν , in our case we have 27 parame-
ters lnµν(r) which are characterized by the additional index
n. Any attempt of a physical interpretation of the lnµν(r)
would be premature at this stage.

Let us consider a fixed plaquette rµν for the moment,
and suppress the indices rµν . We first look for a suitable
linear transformation from the parameters ln to new pa-
rameters mi. There are 8 combinations of the ln which
play a special role, namely the 8 sums

∑128
n=1 sinl

n which
appear in the constraints (2.17) (remember that s8n was
fixed to 1). We will choose these 8 combinations as new
variables mi, i = 1, · · · , 8, eliminate the first eight ln, and
keep the rest of the parameters as they are. The 8×8 ma-
trix made up of the sij with i, j = 1, · · · , 8 will be denoted
by S.

One may consider the sin as a set of 27 vectors Sn =
(s1n, · · · , s7n, s8n = 1) with components ±1. Up to now
we did not specify the order in which these vectors Sn
should be enumerated. It is now convenient to choose the
Sn associated with the first eight values of n in such a way
that εn = 1 for n = 1, · · · , 8, with εn the signs of the trace
(2.10). This can be done in many ways. To be definite we
give our choice in the appendix. Our criteria were a small
but non-vanishing determinant of S (it is 128 for the S in
A.1), and a structure as transparent as possible in some of
the equations below. The transformation finally becomes

mi =
128∑
n=1

sinl
n

=
8∑
j=1

sij l
j +

128∑
α=9

siαl
α for i = 1, · · · , 8,

mα = lα for α = 9, · · · , 128. (3.1)

In matrix form the transformation reads(
mc

mf

)
=

(
S T

0 1

)(
lc
lf

)
,

(
lc
lf

)
=

(
S−1 −S−1T

0 1

)(
mc

mf

)
. (3.2)

We have split m into an eight dimensional “constrained”
vector mc, and a 120-dimensional “free” vector mf . Here
S is the 8 × 8 matrix defined before, with Sij = sij . T is
an 8× 120 matrix, if we enumerate the columns from 9 to
128 we have Tiα = siα.

There is an important restriction which has to be im-
posed on the transformation. It is this restriction which
will later on lead to the area law. If the ln run over all inte-
gers, the same will be true for the mα with α = 9, · · · , 128,
as seen from (3.1). But it is not true for the mi with
i = 1, · · · , 8. From the inversion of the transformation in
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(3.2) one finds that only those mi appear, which fulfill the
condition

lj =
8∑
i=1

(S−1)jimi −
8∑
i=1

(S−1)ji
128∑
α=9

siαm
α

!= integer for j = 1, · · · , 8. (3.3)

A computation of the matrix elements (S−1)ji shows that
they are integer or half integer, and that the sums over
the elements of any row are integer. Because the siα are
±1, this implies that the second sum in (3.3) is auto-
matically integer. Therefore the condition simplifies to∑8
i=1(S

−1)jimi != integer for j = 1, · · · , 8. This restric-
tion finally becomes equivalent to

mi = even for all i, or
mi = odd for all i = 1, · · · , 8. (3.4)

Introducing the transformation (3.2) into the product in
(2.18) one obtains

∑
ln

∏
n

(εn)l
n

Iln

(
β

16

)
=
∑
mi

∑
mα


 8∏
j=1

Ilj(mi,mα)

(
β

16

)

×
128∏
α=9

(εα)m
α

Imα

(
β

16

)
, (3.5)

with lj(mi,mα) =
∑
i(S

−1)jimi −∑α(S−1T )jαmα. The
sum over mi only runs over the subset which fulfills (3.4).
The mα for α = 9, · · · , 128 do not show up in the con-
straints, therefore the summations can be performed. To
do this we introduce the integral representation for all the
modified Bessel functions, thereby partially reversing the
previous step of expanding the exponents.

εlIl

(
β

16

)
=
∫ π

−π

dγ

2π
exp

[
ε
β

16
cos γ + ilγ

]
for ε = ±1.

(3.6)
The mα appear in the exponent now, and the summations
can be performed with the help of the Poisson sum formula

∑
mα

exp


i

γα −

8∑
j=1

γj(S−1T )jα


mα




= 2π
∑
kα

δ


γα −

8∑
j=1

γj(S−1T )jα − 2πkα


 . (3.7)

All γα are integrated over the interval −π < γα ≤ π,
thus exactly one kα contributes in the sum on the rhs.
Furthermore the γα appear only as arguments of periodic
cosines in the remaining part of the integrand. Therefore
we may simply use the δ-functions to eliminate the γα by
putting γα =

∑8
j=1 γj(S

−1T )jα for α = 9, · · · , 128. We
thus are left with∑
ln

∏
n

(εn)l
n

Iln

(
β

16

)
(3.8)

=
∑
mi

∫
dγ1

2π
· · · dγ8

2π
exp


β
16
A(γ) + i

8∑
i,j=1

γj(S−1)jimi


 ,

where we have introduced the function

A(γ) =
8∑
j=1

cos γj +
128∑
α=9

εα cos


 8∑
j=1

γj(S−1T )jα


 . (3.9)

In order to fulfill the conditions (3.4) we put

mi = 2m̃i + f , with m̃i integer, and f = 0 or 1. (3.10)

For our choice of the transformation, the f -dependence of
(3.8) becomes particularly simple and only involves γ8.

We now reintroduce the suppressed indices pρν into
(3.8), (3.10), and insert the result into the partition func-
tion (2.18). We find

Z[J ] =
∑
n̂

Wn̂

∑
m̃i

ρν(p)

∑
fρν(p)

∏
pρν


∫ dγ1

2π
· · · dγ8

2π

× exp


 β

16
A(γ) + 2i

8∑
i,j=1

γj(S−1)jim̃i
ρν(p)

+iγ8fρν(p)






×
∏
rµa

δa[Caµ(r; m̃, f, J, ŝ)]. (3.11)

The constraints (2.17) now depend upon m̃i and f . For
the formulation it is convenient to extend fµν(r) to an
antisymmetric matrix. Thus fµν(r) = 0, 1 for µ < ν, and
fµν(r) = 0,−1 for µ > ν. The constraints then become

Caµ(r) = 2
∑
ν>µ

[m̃(8,1,2)
µν (r) − m̃(6,5,4)

µν (r − ν)]

−2
∑
ν<µ

[m̃(8,7,6)
νµ (r) − m̃(2,3,4)

νµ (r − ν)]

+
∑
ν 6=µ

∆νfµν(r) + Jµ(r)ŝaµn̂(r), (3.12)

where ∆ν denotes the left lattice derivative. The tensor
fµν(r) will be recognized as the Z2 field strength tensor.
As in (2.17) one has to use the first, second, or third upper
index of m̃µν for a = ψ, ϑ, ϕ.

There is a symmetry relation in (3.11) which under-
lines the importance of the Z2 tensor fρν(p). Replace β →
−β and substitute γj → γj + π for all j (the integrand
is periodic). Using the definition of A(γ) in (3.9) and the
fact that

∑8
j=1(S

−1T )jα = 1 for all α, one finds that A(γ)
reverses sign, i.e. βA(γ) stays invariant. The second term
in the exponent of (3.11) changes by a multiple of 2πi, be-
cause

∑8
j=1(S

−1)ji = δ8i, and m̃8
ρν(p) is integer. Finally

the third term changes by iπfρν(p). In this way one finds



484 D. Gromes: Analytic approach to confinement and monopoles in lattice SU(2)

that the bracket (· · ·) in (3.11) is even in β for fρν(p) = 0,
and odd in β for fρν(p) = 1.

Up to this point all formulae were exact. It appears
tempting now to proceed as follows in the continuum limit
of large β. If the function A(γ) has an isolated maxi-
mum, the integrals over γj are dominated by the region
where A(γ) becomes maximal, and the integrations over
the γj can be extended to the interval from −∞ to ∞.
A quadratic expansion around the maximum would then
lead to gaussian integrals. If all the εα were equal to 1, we
would indeed have a simple maximum at γj = 0 for all γj .
This would correspond to the situation in the abelian the-
ory and to the replacement Il(z) → eze−l2/2z/

√
2πz which

was used in [1] (these authors used by mistake e−l2/4z in-
stead of the correct e−l2/2z, which has, however, no con-
sequences there).

In our case the different signs of the εα change the
situation drastically. One finds that the function A(γ) as-
sumes its maximal value of 16 if γ1, γ2, γ3 are arbitrary,
and γj = 0 for j = 4, · · · , 8. Even a quadratic approxima-
tion in γj for j = 4, · · · , 8, and fixed γ1, γ2, γ3 is not pos-
sible because the matrix of the second derivatives has two
zero eigenvalues. For γ1=γ2=γ3=0 even three eigenvalues
vanish. So it would be necessary to go to a higher order
in the expansion; but then the integrations are no longer
gaussian and cannot be performend. This is the way in
which non abelian gauge theory protects itself from being
solved analytically!

Nevertheless the present formalism will clearly show,
how the area law for large loops arises. We keep β arbi-
trary, not necessarily large, and first solve the constraints.

4 Solution of the constraints

It is convenient to rewrite the ϑ-constraints in the form

δϑ[Cϑµ (r)] =
∞∑

kµ(r)=−∞
δϑ[4kµ(r)]δCϑ

µ (r)−4kµ(r),0. (4.1)

This introduces additional sums over the kµ(r), and fac-
tors δϑ[4kµ(r)]. The ϑ-constraints now also appear in form
of a Kronecker-δ.

Let us first consider the constraints modulo 2, which
obviously only concerns the second line of (3.12). The fac-
tors ŝaµn̂(r) = ±1 may be dropped, and for all three cases
a = ψ, ϑ, ϕ we find the equations∑

ν

∆νfµν(r) + Jµ(r) = 0 (mod 2) for all r, µ. (4.2)

These are identical to the equations for lµν(r) in the abel-
ian case, except that they are equations modulo 2. They
show already the appearance of a Z2 structure. We con-
centrate on a geometrical formulation of the solution. Re-
call that fµν(r) = 0, 1 for µ < ν and that fµν(r) is an-
tisymmetric. Therefore it is convenient to use the symbol
εµν = (1,−1, 0) for (µ < ν, µ > ν, µ = ν). Let S be a two

dimensional surface, and

f (S)
µν (r) =

{
εµν if the plaquette rµν is part

of the surface S,
0 otherwise.

(4.3)

The following statements hold:

– If S has the Wilson loop as boundary, then f
(S)
µν (r) is

a solution of (4.2).
– If S is a closed surface, then f (S)

µν (r) is a solution of the
homogeneous equation

∑
ν ∆νf

(H)
µν (r) = 0 (mod 2).

The most general solution can be obtained as a super-
position of a special solution f

(S)
µν (r) with S bounded

by the loop, and a sum over solutions of the homoge-
neous equation.

The proof is obvious. Equation (4.2) involves exactly all
the plaquettes which contain the link rµ. Links rµ on the
loop appear in an odd number of plaquettes of the asso-
ciated surface S, while links rµ which are not part of the
loop appear in an even number (including 0) of plaquettes
of S.

In the following we will restrict the discussion to planar
loops for simplicity. A solution of special importance is the
layer belonging to the minimal surface of the Wilson loop
W ,

f (min)
µν (r) =

{
εµν if the plaquette rµν is part

of the minimal surface,
0 otherwise.

(4.4)

The f (min)
µν (r) associated with the minimal surface fulfills

(4.2) exactly, not only modulo 2, if the loop is oriented
appropriately. For different surfaces, on the other hand,
this is not true.

The general solution of the homogeneous equation∑
ν ∆νf

(H)
µν (r) = 0 (mod 2) can be written down explic-

itly. It depends upon the dimension d. In order to guaran-
tee the antisymmetry of fµν(r) we introduce the symbol
(modµν 2); it is identical with (mod 2) for µ < ν, but
reverses sign for µ > ν. One then has

f (H)
µν (r)

=
{∑

λ εµνλ∆λf(r) (modµν 2) for d = 3,∑
λκ εµνλκ∆λfκ(r) (modµν 2) for d = 4. (4.5)

The function f(r) in three dimensions is unique up to a
constant. For d = 4 one has a gauge freedom, i.e. adding
a gradient ∆κΛ(r) to fκ(r) will not change f (H)

µν (r). The
simplest way to remove this ambiguity is to choose an axial
gauge by imposing

∑
κ nκfκ(r) = 0 (mod 2). In both cases

the values of f(r) and fκ(r), respectively, are restricted to
0 and 1.

Switching from one surface S to another S′ for the
special solution can also be rephrased in terms of the so-
lution of the homogeneous equation. In d = 3 dimensions
it corresponds to changing f(r) by 1 inside the volume
between the two surfaces. (The use of the left derivative
in (4.2), (4.5) specifies which points of the surface have
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to be considered as inside or outside). For d = 4 one has
to choose a three-dimensional volume spanned by the sur-
faces with, roughly speaking, normal vector in κ-direction
at the point r. One then has to change fκ(r) by 1 in-
side the volume, and subsequently transform to the axial
gauge.

The essential part of the constraints has now been
solved. We put

fµν(r) = f (min)
µν (r) +

∑
λκ

εµνλκ∆λfκ(r) (modµν 2). (4.6)

The minimal surface layer f (min)
µν (r), defined in (4.4), is

no longer a variable, but uniquely fixed by the loop. The
fκ(r) = 0, 1 are unconstrained. The index κ on εµνλκ,
fκ(r) and in the sum appears for d = 4 only. For d = 3
it has to be dropped, here and wherever it appears in
subsequent formulae.

We next introduce the solution (4.6) into (3.12). The
second line is now definitely even, therefore we denote it
by

2Raµn̂(r) ≡
∑
ν

∆νfµν(r) + Jµ(r)ŝaµn̂(r). (4.7)

For later use we specify the variables upon which Raµn̂(r)
can depend. The term Jµ(r)ŝaµn̂(r) is strictly local, i.e.
only depends on the argument r. The fκ(r), on the other
hand, appear as ∆ν∆λfκ(r) with ν 6= λ. Therefore they
enter also with shifted arguments r′. The points r′ and r
are neighbors in the sense that all components of r − r′
are either 0 or 1. Finally, one has to note that (4.6) is only
an equation modulo 2. Therefore

∑
ν ∆νfµν(r) as well as

Raµn̂(r) can also depend on the minimal layer f (min)
µν (r).

The constraints (3.12) now become

Caµ(r) = 2
∑
ν>µ

[m̃(8,1,2)
µν (r) − m̃(6,5,4)

µν (r − ν)]

−2
∑
ν<µ

[m̃(8,7,6)
νµ (r) − m̃(2,3,4)

νµ (r − ν)]

+2Raµn̂(r)
!= 4δaϑkµ(r). (4.8)

For a = ψ (first upper index i on m̃i) and a = ϕ (third
upper index i on m̃i), i.e. for the even indices i, the in-
dex i appears in both sums of (4.8). For a fixed r one
has 2d linear equations (corresponding to a = ψ,ϕ and
µ = 1, · · · , d) for 4d(d − 1)/2 quantities m̃(2,4,6,8)

µν . These
equations are not independent due to the identity∑
µ

[Cψµ (r)−Cϕµ (r−µ)] = 2
∑
µ

[Rψµn̂(r)−Rϕµn̂(r−µ)]. (4.9)

The rhs of (4.9) vanishes because fµν is antisymmetric,
and because the neighboring projectors in the loop have
to coincide as mentioned in Sect. 2. We checked explic-
itly for d = 3, 4 that the equations may be simply used
to eliminate some of the m̃i

µν(r). Any eliminated m̃i
µν(r)

depends linearly on other unconstrained m̃i′
µ′ν′(r′) and on

Raµ′n̂(r
′), where the components of r′-r are either 0 or ±1.

For a = ϑ (second upper index i on m̃i), i.e. for the
odd indices i, the situation is even simpler. Each index i
enters only in one of the sums in (4.8), it is convenient to
eliminate some of the m̃1

µν(r) and m̃7
νµ(r).

Finally we can write the solutions of the constraints in
the following form, which eliminates some of the m̃i

µν(r),
leaving the rest unconstrained.

m̃i
µν(r) = Liµν [m̃

i′
µ′ν′(r′), Raµ′n̂(r

′)] + 2kiµν(r), (4.10)

with kiµν(r) = (kµ(r), kν(r), 0) for (i = 1, i = 7,otherwise).
The Liµν are linear combinations of their arguments, only
coefficients 0,±1 appear. The arguments r, r′ are neigh-
bors in the sense explained before. The loop current Jµ(r)
enters only in Raµ′n̂(r

′).
Note the drastic difference in the type of the con-

straints (4.2) (or the corresponding constraints in (6) of
ref [1] for the U(1) case) on one hand, and the constraints
(4.8) just considered on the other. The former involve
a difference operator applied to one plaquette variable
fµν(r), the corresponding Green function being non-local
and coupling the solution to the current over a long range.
In contrast, the latter constraints involve several plaquette
variables m̃i

µν(r) and can just be used to eliminate some of
these. This elimination leads to an almost local coupling
to the current, involving neighbors only.

5 Confinement

The essential feature, which finally arose in our formula-
tion, is the presence of the Z2 field strength tensor fµν(r)
which obeys the field equation (4.2). The solutions of this
equation can be characterized by two-dimensional sur-
faces; a layer with the Wilson loop as boundary, possibly
together with closed surfaces. One may expect that the
presence of such a layer will lead to an area law. For a
qualitative understanding of the confinement mechanism
we use the explicit form (4.6) for the solution of the field
equation (4.2). It contains the fixed layer f (min)

µν (r), to-
gether with the unconstrained Z2 variable fκ(r). The so-
lutions of the remaining constraint equations (4.8) for the
m̃i
µν(r) have the form (4.10).
Consider now the expression (3.11) for the partition

function Z[J ], and introduce the solutions (4.6), (4.10) of
the constraints into the exponential on the rhs. This gives

2
8∑

i,j=1

γj(S−1)jim̃i
ρν(p) + γ8fρν(p)

= 2
8∑

i,j=1

γj(S−1)ji{Liρν [m̃i′
ρ′ν′(p′), Raρ′n̂(p

′)] + 2kiρν(p)}

+γ8

{
f (min)
ρν (p) +

∑
ερνλκ∆λfκ(p)(modµν 2)

}
. (5.1)

The Wilson loop enters into this expression in two dif-
ferent ways. First there is a dependence on the current
Jρ′(p′)ŝaρ′n̂(p

′) which arises from the second term of
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Raρ′n̂(p
′) in (4.7). Secondly there is a dependence on the

minimal layer f (min)
ρν (p) which enters into the first term of

Raρ′n̂(p
′), as well as explicitely in the factor of γ8.

The current J is present on a one-dimensional set, the
minimal layer f (min) on a two-dimensional set. Besides
this, both quantities enter in a quite similar way into (5.1).
One may therefore expect, that for large loops the depen-
dence on the one-dimensional current J can be neglected
compared to the dependence on the two-dimensional layer
f (min).

If we neglect the dependence on Jρ′(p′) the partition
function becomes independent of the ŝaρ′n̂(p

′) and the sum∑
n̂Wn̂ = 2 can be performed. Assuming that the γ-

integrations have been done, the degrees of freedom are
now in the remaining unconstrained m̃i

ρν(p) = −∞, · · · ,
∞, the fκ(p) = 0, 1, and the kµ(r) = −∞, · · · ,∞ intro-
duced at the beginning of Sect. 4.

The discussion of (4.8) showed that the solutions cou-
ple neighbors only. This means that (5.1), which appears
in the exponential in (3.11), only depends on these vari-
ables with arguments p, p′, p′′; here p′, p′′ are neighbors in
the sense that all components of p′-p are 0,±1, all com-
ponents of p′′-p are 0,±1,±2.

We digress for a technical point. Neither the exponen-
tial in (3.11) with it’s complex argument, nor the factors
δϑ[4k] are positive definite. Actually, according to the def-
inition (2.16), one has

∑
k δ

ϑ[4k] = 0, because the Haar
measure fulfills H(0) = 0. If desired, one could bring the
expression into the usual form of a partition function with
positive summands, by performing a twofold partial sum-
mation with respect to the kµ(r).

The whole loop dependence is now in the f
(min)
ρν (p)

belonging to the minimal surface. It acts like a space-time
dependent external field, comparable, say, to a constant
magnetic field switched on in a finite volume of an Ising
model. Z[J ] is a partition function where the variables
couple to neighbors only, a well known standard situation
in statistical mechanics. For large subsystems it therefore
factorizes into products refering to the subsystems and,
correspondingly, has an exponential dependence on the
volume. This is, of course, nothing else but the fact that
the free energy is an extensive quantity. Rigorous proofs,
which apply for any dimension, can be found in [5].

Consider now a loop 0 < x1 ≤ R, 0 < x4 ≤ T in
the x1-x4-plane for definiteness, with R and T large. We
divide the x1-x4-plane inside, as well as outside of the
loop, into rectangles; these rectangles are then extended to
d-dimensional boxes into the orthogonal directions. This
means that we define regions V (n) by the inequalities r(n)

1

< x1 ≤ r
(n)
2 , t(n)

1 < x4 ≤ t
(n)
2 , x2, x3 arbitrary. The rect-

angle r(n)
1 < x1 ≤ r

(n)
2 , t(n)

1 < x4 ≤ t
(n)
2 has to lie either

completely inside the loop, or completely outside the loop.
If not only R and T , but also all the differences r(n)

2 −r
(n)
1

and t(n)
2 − t

(n)
1 are large, the partition function will factor-

ize,

Z[J ] =
∏
n

Z(n). (5.2)

Consider now the ratio Z[J ]/Z[0], with Z[0] the expression
without loop. Obviously all the outer factors cancel. For
the inner ones, on the other hand, one has f (min)

ρν (p) = 1
in the numerators, but 0 in the denominators. Thus the
ratios are different from 1. Because of the factorization
property, the volumes of the regions V (n) have to enter in
the exponent. This finally implies that the area A = R×T
of the loop enters in the exponent, so the result may be
written as

Z[J ]/Z[0] = exp[−σA]. (5.3)
We have obtained the area law for large loops.

Several comments are appropriate here.
First one may wonder what would happen with our

argumentation, if we would replace f (min)
ρν (p), associated

with the minimal surface, by a solution f (S)
ρν (p), belonging

to a different surface S. Obviously the simplicity of the
situation for the regions V (n) inside and outside would
break down, and factorization would not lead to a sim-
ple relation. The minimal surface is really unique for the
argumentation.

The neglection of the dependence on J would certainly
have been wrong if performed in the original expression
described by the Euler angles ψµ(r), ϑµ(r), ϕµ(r). There
one had only the current J but no layer f (min) showed up.
Therefore confinement has to arise from the dependence
on J in a complicated way. In our formulation the for-
malism led to another quantity, the minimal layer f (min).
This appears as the natural quantity which describes the
long distance physics and dominates the residual direct
dependence on J .

For illustration one can have a look on the strong
coupling limit. According to the discussion at the end
of Sect. 3, the bracket (· · ·) in (3.11) is even in β for
fρν(p) = 0, and odd in β for fρν(p) = ερν . Therefore the
order β0 only contributes outside the surface layer, while
the order β terms come from plaquettes on the surface
layer. In this way we recover the well known lowest order
strong coupling result Z[J ]/Z[0] ∼ βA. More important,
we have seen that indeed f (min) is the crucial quantity.

For a Wilson loop in the adjoint representation one
does not expect an area law, because the charges can be
screened by pair creation. This can be easily checked in our
approach. The traces in the adjoint and in the fundamen-
tal representation are related by TrW(1) = [TrW(1/2)]2−1.
With our parametrization we obtain

[TrW(1/2)]2 =


∑

n̂

Wn̂ exp


i∑

qλb

Jλ(q)ŝbλn̂(q)Θ
b
λ(q)






2

=
∑
n̂n̂′

Wn̂Wn̂′ (5.4)

× exp


i∑

qλb

Jλ(q)[ŝbλn̂(q) + ŝbλn̂′(q)]Θbλ(q)


 .

The last term on the rhs of the modified equation (3.12)
becomes Jµ(r)[ŝaµn̂(q)+ŝ

a
µn̂′(q)] and is always even. There-

fore (4.2) becomes a homogeneous equation, no minimal
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layer and no area law will appear. Similarly one can see
that we don’t get confinement if we replace SU(2) by
SO(3).

With some technical effort or a more streamlined ap-
proach it should be possible to carry through a similar
analysis for SU(3). It would be nice to see, how the for-
malism would create the expected Z3 structure.

Our conclusions which led to the area law would break
down if the result, by some reason whatsoever, would be
independent of fρν(p), thereby giving a vanishing string
tension. This appears hardly possible for a finite lattice.
We have seen before that there is indeed an essential de-
pendence on fρν(p) in the strong coupling limit β → 0.
Such a dependence must survive for all finite β because the
original expression Z[J ] in (2.1) clearly fulfills the strict
inequalities 0 < Z[J ] < Z[0]. The string tension might,
however, vanish in a certain region of β after perform-
ing the thermodynamic limit. In particular such an effect
could be expected in higher dimensions, where the pres-
ence of the two dimensional layer becomes relatively less
important than in lower dimensions. Indeed it is known
[6] that lattice SU(2) has a first order phase transition for
d = 5 at βc = 1.642 ± 0.015.

We come back to d = 4. At the end one is interested
in the continuum limit β → ∞ which requires a particular
investigation. If the string tension is a physical quantity
and β goes to infinity as prescribed by the renormalization
group, a non vanishing string tension for the lattice theory
will persist in the continuum limit.

6 Interpretation and conclusions

There is an extensive literature on the various pictures of
confinement which cannot be discussed here. For a recent
review we refer to [7]. We come directly to the physical
interpretation of our results. The key is equation (4.2) for
the Z2 field strength tensor,∑

ν

∆νfµν(r) + Jµ(r) = 0 (mod 2). (6.1)

The solutions in form of layers on two-dimensional sur-
faces were discussed in detail in Sect. 4.

In d=3 dimensions put

fµν(r) =
∑
λ

εµνλBλ(r) (modµν 2).

Then (6.1) becomes ∇ × B = J (mod 2). The magnetic
field B has sources corresponding to magnetic monopoles.
It is reasonable to use the right derivative in the diver-
gence, and to associate the monopole density ρ̃ with cubes
as usual. We therefore define

ρ̃(r123) =
∑
ν

∆(right)
ν Bν(r) (mod 2). (6.2)

The solution f
(min)
µν (r) then immediately leads to a dou-

ble layer of monopoles in the cubes on both sides of the
minimal surface.

For d=4 we define the dual tensor

f̃µν(r) = (1/2)
∑
λκ

εµνλκfλκ(r) (modµν 2).

The conserved (mod 2) magnetic current J̃µ lives on 3-
dimensional cubes rρλκ, where ρ, λ, κ denote the three di-
rections orthogonal to µ.

J̃µ(rρλκ) =
∑
ν

∆(right)
ν f̃µν(r) (mod 2). (6.3)

Consider a loop in the x1-x4-plane, with x4 interpreted as
euclidean time. Let x1, x4 be within the loop and suppress
the x4-extension of the cubes. For the solution f

(min)
µν (r)

we then get a non-vanishing J̃µ on all plaquettes in the
x1-x2-plane and in the x1-x3-plane which contact the line
x2=x3=0. We thus have a string of electric field E1(r) =
f14(r) in x1-direction, concentrated on x2=x3=0. This is
surrounded by magnetic current loops parallel to the x2-
x3-plane which circle around the electric string. The con-
figuration is therefore just dual to an Abrikosov vortex in a
type II superconductor, where the magnetic field is encir-
cled by the electric current. Flux quantization is evident,
the Z2-structure only allows for one unit of flux.

Configurations fµν(r) in (4.6) with fκ(r) 6= 0 belong to
other surfaces which are bounded by the loop as discussed
in Sect. 4. In addition closed surfaces can appear. The
interpretation is similar as above. For illustration, connect
e.g. two points in the x1-x2-plane by a path in form of a
stair. Then J̃µ lies on the plaquettes which point from the
stair into positive and negative x3-direction. All surfaces
are summed with the appropriate weight in the partition
function. A careful investigation of the various weights
should give information about the extension of the electric
flux tube.

We finally check the dual London equation, ∇ × J̃ =
1
ΛE (mod 2). It is easily seen that (∇ × J̃)µ(r) (mod 2) is
equal to 0 (1) if the link rµ has contact to an even (odd)
number of plaquettes with non-vanishing magnetic cur-
rent. For the examples discussed above this means that
∇ × J̃ runs along the boundary of the set of plaque-
ttes which carry the magnetic current. For the minimal
layer, ∇ × J̃ is parallel to E as it should. It is, however,
not concentrated on x2=x3=0 as the electric field, but
on the four lines x2=0, x3 = ±1 and x3=0, x2 = ±1.
For the stair, ∇ × J̃ is shifted by x3 = ±1 with respect
to E. In general the dual London equation is essentially
fulfilled, the two sides of the equation are just slightly
shifted against each other. This might be interpreted by a
non-vanishing Ginzburg-Landau coherence length ξ̃ which
leads to a “normal” region near the string, where the Lon-
don equation is not valid.

Let us compare with some familiar types of monopoles
in the literature.

The charges of the U(1) monopoles in [1] can take all
integers, in obvious contrast to our Z2 structure which
only allows 0 and 1.

A popular definition of monopoles in SU(2) is dis-
cussed e.g. in [8]. Let η(p) ≡ signTrU(p) denote the sign of
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the plaquette action, and ηc =
∏
p∈∂c η(p) the product of

the η(p) around the boundary of the cube c. Then ηc = −1
represents a monopole in the (space like) cube c. There is
a Z2 structure as in our case.

Another frequently applied definition, reviewed e.g. in
[9], uses the maximal abelian gauge. In a first step one
maximizes the quantity R =

∑
rµ Tr[σ3Uµ(r)σ3U

+
µ (r)].

The link matrices are then decomposed into a non-abelian
and a U(1) part, e.g. one can take the abelian link angle
as the phase of [Uµ(r)]11. The U(1) monopoles are then
defined according to the DeGrand Toussaint construction
[10] which allows monopole charges 0,±1,±2.

The monopoles which naturally arose in the present
work have no direct relation to any of these. An unconven-
tional feature of our approach is the presence of monopoles
in every configuration. In the approaches mentioned above
there are plenty of configurations without any monopoles,
namely those near the perturbative vacuum. In our case
there is always a surface S bounded by the loop. This
is associated with an electric string and accompanied by
monopole vortices. From a physical point of view this ap-
pears quite attractive.

Acknowledgements. I thank I. Bender and H.J. Rothe for read-
ing the manuscript and for valuable criticism.

A Appendix

For definiteness we give here the matrix S used by us in
Sect. 3 when selecting a convenient subset of the Sn. It
reads

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 1 −1 1 1 1
−1 −1 1 −1 1 −1 1 1
−1 1 1 1 −1 1 1 1
−1 −1 1 1 1 1 1 1
−1 1 1 −1 −1 1 −1 1
−1 −1 −1 1 −1 1 −1 1
−1 −1 1 −1 −1 1 −1 1

1 1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.1)

Recall that the columns of S consist of 8 of the vectors
Sn, with the property that εn = +1. The last component,
corresponding to s8, was fixed to 1.
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